Unstructured Text Documents Summarization With Multi-Stage Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentence Clustering-based Summarization of Multiple Text Documents

With the rapid growth of the World Wide Web, information overload is becoming a problem for an increasingly large number of people. Automatic Multidocument summarization can be an indispensable solution to reduce the information overload problem on the web. This kind of summarization facility helps users to see at a glance what a collection is about and provides a new way of managing a vast hoa...

متن کامل

Clustering Full Text Documents

An index or topic hierarchy of full-text documents can organize a domain and speed information retrieval. Traditional indexes, like the Library of Congress system or Dewey Decimal system, are generated by hand, updated infrequently, and applied inconsistently. With machine learning, they can be generated automatically, updated as new documents arrive, and applied consistently. Despite the appea...

متن کامل

Multi-Document Arabic Summarization Using Text Clustering to Reduce Redundancy

“The process of multi-document summarization is producing a single summary of a collection of related documents. In this work we focus on generic extractive Arabic multi-document summarizers. We also describe the cluster approach for multi-document summarization. The problem with multi-document text summarization is redundancy of sentences, and thus, redundancy must be eliminated to ensure cohe...

متن کامل

Document Clustering and Text Summarization

This paper describes a text mining tool that performs two tasks, namely document clustering and text summarization. These tasks have, of course, their corresponding counterpart in “conventional” data mining. However, the textual, unstructured nature of documents makes these two text mining tasks considerably more difficult than their data mining counterparts. In our system document clustering i...

متن کامل

Mining criminal networks from unstructured text documents

Digital data collected for forensics analysis often contain valuable information about the suspects’ social networks. However, most collected records are in the form of unstructured textual data, such as e-mails, chat messages, and text documents. An investigator often has to manually extract the useful information from the text and then enter the important pieces into a structured database for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3040506